Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation.
نویسندگان
چکیده
An understanding of the mechanisms that control CO2 change during glacial-interglacial cycles remains elusive. Here we help to constrain changing sources with a high-precision, high-resolution deglacial record of the stable isotopic composition of carbon in CO2(δ(13)C-CO2) in air extracted from ice samples from Taylor Glacier, Antarctica. During the initial rise in atmospheric CO2 from 17.6 to 15.5 ka, these data demarcate a decrease in δ(13)C-CO2, likely due to a weakened oceanic biological pump. From 15.5 to 11.5 ka, the continued atmospheric CO2 rise of 40 ppm is associated with small changes in δ(13)C-CO2, consistent with a nearly equal contribution from a further weakening of the biological pump and rising ocean temperature. These two trends, related to marine sources, are punctuated at 16.3 and 12.9 ka with abrupt, century-scale perturbations in δ(13)C-CO2 that suggest rapid oxidation of organic land carbon or enhanced air-sea gas exchange in the Southern Ocean. Additional century-scale increases in atmospheric CO2 coincident with increases in atmospheric CH4 and Northern Hemisphere temperature at the onset of the Bølling (14.6-14.3 ka) and Holocene (11.6-11.4 ka) intervals are associated with small changes in δ(13)C-CO2, suggesting a combination of sources that included rising surface ocean temperature.
منابع مشابه
Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation.
Recent studies have proposed that millennial-scale reorganization of the ocean-atmosphere circulation drives increased upwelling in the Southern Ocean, leading to rising atmospheric carbon dioxide levels and ice age terminations. Southward migration of the global monsoon is thought to link the hemispheres during deglaciation, but vital evidence from the southern sector of the vast Australasian ...
متن کاملSedimentological, Geochemical and Isotopic Evidence for the Establishment of Modern Circulation through the Bering Strait and Depositional Environment History of the Bering and Chukchi Seas during the Last Deglaciation
SEDIMENTOLOGICAL, GEOCHEMICAL AND ISOTOPIC EVIDENCE FOR THE ESTABLISHMENT OF MODERN CIRCULATION THROUGH THE BERING STRAIT AND DEPOSITIONAL ENVIRONMENT HISTORY OF THE BERING AND CHUKCHI SEAS DURING THE LAST DEGLACIATION Sea level regression during the Last Glacial Maximum exposed the Bering Land Bridge, and cut off the connection between the North Pacific and Arctic Ocean, ending the exchange of...
متن کاملGlacial-Interglacial Atmospheric CO2 Change —The Glacial Burial Hypothesis
Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO2 change over the glacial-interglacial cycles. At glaciation, the advancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer periods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation o...
متن کاملAbrupt change in atmospheric CO2 during the last ice age
[1] During the last glacial period atmospheric carbon dioxide and temperature in Antarctica varied in a similar fashion on millennial time scales, but previous work indicates that these changes were gradual. In a detailed analysis of one event we now find that approximately half of the CO2 increase that occurred during the 1500-year cold period between Dansgaard-Oeschger (DO) events 8 and 9 hap...
متن کاملSilicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation.
Today's Sargasso Sea is nutrient starved, except for episodic upwelling events caused by wind-driven winter mixing and eddies. Enhanced diatom opal burial in Sargasso Sea sediments indicates that silicic acid, a limiting nutrient today, may have been more available in subsurface waters during Heinrich Stadials, millennial-scale climate perturbations of the last glacial and deglaciation. Here we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 13 شماره
صفحات -
تاریخ انتشار 2016